首页
Python基础
环境配置
工具代码
机器学习
分类算法
推荐算法
优化算法
深度学习
计算机视觉
图像分类
图像生成
目标检测
语义分割
自然语言处理
文本分类
机器翻译
时间序列处理
MTS表示学习
MTS预测
MTS聚类
终身学习
关于我们
历史记录
1
【时间序列-表示学习】多变量时间序列表示学习-对比算法
2
【环境配置】Conda 开发环境配置基础
3
【环境配置】Linux GPU 环境配置(驱动、Cuda和Cudnn安装)
4
【图像分类】关于ViT性能改进的一些个尝试
5
【时间序列-论文解读】连接点:图神经网络的多变量时间序列预测
览平科技
累计撰写
22
篇文章
累计创建
2
个标签
累计收到
1
条评论
栏目
首页
Python基础
环境配置
工具代码
机器学习
分类算法
推荐算法
优化算法
深度学习
计算机视觉
图像分类
图像生成
目标检测
语义分割
自然语言处理
文本分类
机器翻译
时间序列处理
MTS表示学习
MTS预测
MTS聚类
终身学习
关于我们
历史记录
搜索
标签搜索
无监督学习
有监督学习
目 录
CONTENT
以下是
图像分类
相关的文章
2022-06-29
【图像分类】关于ViT性能改进的一些个尝试
1 基础模型介绍1.1 ViTViT (Vision Transformer) 模型结合了CV和NLP领域的知识,它首先将原始图像分割为固定大小的若干块,并对每个图像块进行线性嵌入将其扁平化为一个序列,然后把得到的向量序列输入到原始Transformer模型的编码器中,最后连接到全连接层,对图片进行
2022-06-29
1177
0
0
深度学习
计算机视觉
图像分类
2022-04-16
【论文解读】关于self-attention和卷积的整合
卷积和自注意力是表示学习的两种强大技术,它们通常被认为是两种截然不同的对等方法。在本文中,我们表明它们之间存在很强的潜在关系,因为这两种范式的大部分计算实际上是通过相同的操作完成的。具体来说,我们首先展示了内核大小为 k×k 的传统卷积可以分解为 $k^2$ 个单独的 1×1 卷积,然后进行移位和求
2022-04-16
964
0
0
深度学习
计算机视觉
图像分类